
Parallel Redundancy Removal in lrslib
with Application to Projections

David Avis and Charles Jordan

Abstract We describe a parallel implementation in lrslib for removing redun-
dant halfspaces and finding a minimum representation for an H -representation of
a convex polyhedron. By a standard transformation, the same code works for V -
representations. We use this approach to speed up the redundancy removal step in
Fourier-Motzkin elimination. Computational results are given including a compari-
son with Clarkson’s algorithm, which is particularly fast on highly redundant inputs.

Keywords Redundancy removal · Convex hulls · Minimum representations ·
Fourier-Motzkin elimination · Parallel processing

1 Introduction

In this section we give a general overview of the topics to be discussed, leaving
formal definitions for the next section. In this paper we deal with convex polyhedra
whichwe assume, to avoid trivialities, are non-empty. The computational problems of
(1) removing redundancy, (2) finding a minimum representation and (3) projecting
a system of m linear inequalities in R

n (an H -representation) are fundamental in
many areas of mathematics and science. The first two problems are usually solved
using linear programming (LP), and the third via Fourier-Motzkin (F-M) elimination.
Linear programming is solvable in polynomial time and so are the first two problems.
Projection is more difficult and was shown to be N P-hard by Tiwary [7]. Similar

Partially supported by JSPS Kakenhi Grants 20H00579, 20H00595, 20H05965, 22H05001 and
23K11043.

D. Avis (B)
School of Informatics, Kyoto University, Kyoto, Japan
e-mail: avis@cs.mcgill.ca

School of Computer Science, McGill University, Montréal, Québec, Canada

C. Jordan
Department of Information andManagement Science, Otaru University of Commerce, Otaru, Japan
e-mail: skip@res.otaru-uc.ac.jp

© The Author(s) 2025
S. Minato et al. (eds.), Algorithmic Foundations for Social Advancement,
https://doi.org/10.1007/978-981-96-0668-9_14

209

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0668-9_14&domain=pdf
mailto:avis@cs.mcgill.ca
mailto:skip@res.otaru-uc.ac.jp
https://doi.org/10.1007/978-981-96-0668-9_14

210 D. Avis and C. Jordan

problems arise when the input is given by a set of vertices and extreme rays (a V -
representation). In this case, the first two problems are computationally equivalent
to the inequality setting whereas the projection problem is easier and can be solved
in polynomial time.

For the redundancy problem, the classic method is to consider each inequality
in turn. Checking redundancy of a given inequality (ie, whether it can be removed
without changing the solution set) can be done by solving one LP and each redun-
dant inequality is deleted once it is found. This simple approach requires m LPs to
be solved, with the number of constraints equal tom minus the number of redundan-
cies already encountered. Clarkson [3] introduced an output-sensitive improvement.
Again m LPs are solved but the number of constraints is bounded by the number of
non-redundant inequalities, see Sect. 3 for details. Fukuda et al. [6] also presented
an output-sensitive approach to redundancy removal based on the sign structure of
all associated LP dictionaries. The complexity contains an exponential term in the
dimension and it does not appear to have been implemented.

In general, certain inequalities may be satisfied as equations by the solution set for
the entire system and these are known as linearities. In the minimum representation
problem, all linearities must be identified and all redundancy removed. Redundant
inequalities cannot be linearities. For a given non-redundant inequality, a second LP
can be used to determine if it is a linearity. Alternatively this can be done by solving a
single large LP as shown by Freund et al. [4], although the practicality of that method
is unclear.

The projection problem is to project the polyhedron into a subspace. For the easier
problem (projecting a V -representation), we simply select the the coordinates of the
input vectors that remain after the projection and then find aminimum representation.
The output polyhedron has fewer dimensions and at most as many vertices and rays,
so is smaller than the input. For projecting an H -representation, the F-M method
eliminates one variable at a time but the number of inequalities can increase by
a quadratic factor at each step. Many of these may be redundant, so an efficient
implementation includes repeated redundancy removal.

Themethods outlined above for redundancy removal are sequential, however they
seem good candidates for parallelization. The classic method is particularly simple
and is what we chose to implement. The subtleties involved are a main topic of
this paper. The paper is organized as follows. The next section contains formal def-
initions. Section 3 explains how we parallelize redundancy removal and minimum
representation algorithms, and also contains a brief description of Clarkson’s algo-
rithm. Section 4 shows how parallelization is used to speed up F-M elimination and
computational results are given in Sect. 5. Finally we give some conclusions and
directions for future research.

Parallel Redundancy Removal in lrslib 211

2 Basic Definitions

We begin by giving some basic definitions related to polyhedra and linear program-
ming. Formore information, see the books byChvátal [2], Fukuda [5] andZiegler [8].
Given an m × n matrix A = (ai j), an m dimensional vector b and a possibly empty
subset J ⊆ {1, . . . ,m} we let AJ and bJ denote the submatrix of A and subvector of
b with rows indexed by J . We denote by A−J and b−J the submatrix and subvector
where the rows corresponding to the indices J have been deleted. In the case where
J = {i} is a singleton we write Ai , bi , A−i , b−i respectively.

Let L and I be a partition of {1, . . . ,m}. A convex polyhedron, or simply polyhe-
dron, P is defined as:

P = {x ∈ R
n : bL + ALx = 0, bI + AI x ≥ 0}. (1)

This description of a polyhedron is known as an H-representation and the rows
indexed by L are called linearities. To avoid trivialities we will assume that all
polyhedra discussed in this paper are non-empty; this canbe testedby a linear program
(LP). We may also assume that the system of equations defined by L is linearly
independent, using Gaussian elimination if necessary to delete dependencies.

Another way to describe P is by aV-representation. In this case we have finite sets
of vectorsV, R, S inRn of vertices, rays and linearities. The fundamentalMinkowski-
Weyl theorem states that for every P defined by (1)

P = conv(V) + conic(R) + lin(S). (2)

In words, every x ∈ P can be expressed as the sum of a convex combination of
vertices, a nonnegative combination of rays and a linear combination of linearities.
The most fundamental problem in polyhedral computation is the conversion of an
H -representation to a V -representation and vice versa. The former problem is often
called the vertex enumeration problem and the latter problem the facet enumeration
problem. This computation forms the core of lrslib, see [1] for a discussion of how
it is solved in parallel.

For i ∈ I , we let P−i denote the polyhedron defined by A−i and b−i . If P =
P−i we say that row i is redundant. This is equivalent to saying that each x ∈ P−i

satisfies bi + Ai x ≥ 0. If each such x actually satisfies bi + Ai x > 0 we say row i
is strongly redundant otherwise it is weakly redundant. Finally if for each x ∈ P we
have bi + Ai x = 0, we say that row i is a hidden linearity and index i can be moved
to the set L if the rows indexed by L remain linearly independent. Otherwise row i
is deleted.

The H -representation (1) of P is non-redundant if there are no redundant
indices i . It is a minimum representation if it is non-redundant and contains no hid-
den linearities. In this case the dimension of P is n − |L| and P is full dimensional
if L is empty. The first part of this paper describes a parallel method for removing
redundancies and computing a minimum description of a polyhedron based on linear

212 D. Avis and C. Jordan

programming. We also describe Clarkson’s algorithm [3] which gives a much more
efficient LP approach when the input polyhedron is highly redundant. However, this
method seems more challenging to parallelize.

Section 4 concerns projections of polyhedra. Let A and B partition the column
indices {1, . . . , n}. For x ∈ P we write x = (xA, xB) to represent the corresponding
decomposition of x into subspaces RA and R

B that partition R
n . The projection of

P onto the subspace RA is given by

PA = {xA ∈ R
A : ∃x = (xA, xB) ∈ P}. (3)

We will show how the parallel redundancy method described in Sect. 3 can be used
to speed up the operation of the F-M method of computing projections.

3 Parallel Redundancy Removal and Finding a Minimum
Representation

Assume we are given an H -representation (1) of a non-empty polyhedron P where
L defines a linearly independent set of equations. Choose i ∈ I and consider the two
LPs:

zmin = min bi + Ai x s.t. b−i + A−i x ≥ 0 (4)

zmax = max bi + Ai x s.t. b−i + A−i x ≥ 0. (5)

The status of the i-th inequality is determined by the following well known propo-
sition based on the definitions. For completeness we give a short proof.

Proposition 1 The inequality bi + Ai x ≥ 0 is a linearity if zmax = 0 otherwise it is

(a) weakly redundant if zmin = 0
(b) strongly redundant if zmin > 0
(c) non-redundant if zmin < 0 or unbounded

Proof In the LP dictionary (see Chvátal [2]) the i-th inequality is represented using
the non-negative slack variable xn+i as

xn+i = bi + Ai x . (6)

LP (5) seeks to find a feasible point in P−i that satisfies the inequality strictly. If
zmax = xn+i = 0 this is not possible so the inequality is in fact a linearity. Otherwise
LP (4) seeks to find a point in P−i that violates the constraint. If zmin = xn+i ≥ 0
then the inequality cannot be violated so it is redundant, and if zmin > 0 it is strongly
redundant. Finally if zmin < 0 then there is some feasible point in P−i that violates
the constraint and hence it is non-redundant. �

Parallel Redundancy Removal in lrslib 213

It might seem that the proposition leads immediately to a parallel algorithm for
redundancy removal: check and classify each row index independently. However
this fails due to the possibility of duplicated rows, and in the presence of linearities
these may be hard to discover. For example, consider the system:

3 + x1 − 2x2 = 0

x1 ≥ 0

−6 − x1 + 4x2 ≥ 0.

Both rows 2 and 3 considered independently are redundant since if we add twice row
1 to row 3 we obtain row 2. They are both weakly redundant: we can eliminate either
one but not both. But if each of these rows is considered by a different processor
both will be marked redundant, which is an error as one of them must remain as
non-redundant. This problem becomes more acute when the system contains hidden
linearities which can easily mask duplication. Nevertheless, inequalities classified as
linearities, strongly redundant or non-redundant will all be correctly classified. Only
weakly redundant inequalities are problematic.

To solve this problem we recall that for full dimensional polyhedra, ie, when
there are no linearities, the H -representation is unique up to multiplication of rows
by positive scalars. In this casewe can reduce each rowby its greatest commondivisor
(GCD) and then sort the rows to reveal and remove duplication. Now each remaining
inequality can be tested independently and in parallel to see if it is redundant. Our
general strategy will be to first find any hidden linearities in P . Then we will use the
linearities to eliminate variables until the resulting system is full dimensional.

As a first step, we can check whether the H -representation (1) has any hidden
linearities by the single LP:

max xn+1 s.t. bL + ALx = 0, bI + AI x ≥ 11|I | xn+1 (7)

where 11t denotes a column of t ones. The LP terminates with xn+1 > 0 if and only
if there is a point in P that does not lie on the boundary of any inequality and
so there are no hidden linearities. If there are any hidden linearities then they can be
identified via Proposition 1 and this can be done in parallel. If there are no hidden
linearities then LP (5) does not need to be solved when classifying the inequality
set I . The complete procedure is described below for a polyhedron P given as (1).

Parallel algorithm for finding a minimum representation
(a) Solve LP (7) to determine if there are any hidden linearities. If there are none,

set W = I and go to step (c).
(b) (parallel) For each i ∈ I determine the status of bi + Ai x ≥ 0 according to

Proposition 1. Place i into the corresponding subset S (strongly redundant),
W (weakly redundant), N (non-redundant) or otherwise add it to L and remove
it from I .

(c) Remove any index i ∈ L from L for which bi + Ai x = 0 is linearly dependent.

214 D. Avis and C. Jordan

(d) For each remaining index i ∈ L , use equation bi + Ai x = 0 to remove one vari-
able from bI + AI x ≥ 0 by substitution.

(e) Reduce each inequality by its GCD and eliminate any duplicate rows from I
obtaining an index set J and the reduced system bJ + AJ x ≥ 0. Note there is
no linearity in this system as it is full dimensional.

(f) (parallel) For each i ∈ W ∩ J determine the status of inequality i by solving LP
(4) for the reduced system, classifying them as in step (b).

Observe that if there are no hidden linearities then only one LP needs to be solved
for each index in I . When there are hidden linearities, the number of LPs to solve
depends on the order of solving LPs (4) and (5) in step (b). If we solve them in the
order described, then the second LP only needs to be solved when a weak redundant
inequality is found. This is the order used in lrslib. In the reverse order, the second
LP needs to be solved whenever a linearity is not found. In either case a further LP
is required for each weakly redundant inequality in step (f).

A modified procedure requires at most 2 LPs to be solved per inequality when
there are hidden linearities. In step (b) we could just solve (5) and hence determine
all linearities in I . We define W to be all remaining inequalities and proceed as
given. This approach will be faster if most inequalities are weakly redundant, since
these require only 2 LPs rather than 3. However, if most inequalities are not weakly
redundant or hidden linearities then it will be slower as most of the time only the
LP (4) needs to be solved.

The size of the LPs to be solved can be greatly reduced in cases where most
of the input is redundant using a method introduced by Clarkson [3]. He states his
method in terms of identifying the extreme points of a given set of input points in
R

d . The equivalent algorithm stated in terms of detecting redundant inequalities in
an H -representation is given in Sect. 7.1 of [5]. Quoting from [3] (emphasis ours):

Clarkson’s algorithm [3]
The algorithm here is as follows: process the points of S in turn, maintaining a set E ⊂ S
of extreme points. Given p ∈ S, it is possible in O(|E |) = O(A) time, using linear pro-
gramming, to either show that p is a convex combination of points of E , or find a witness
vector n for p, so that n · p > n · q for all q ∈ E . If the former, p is not extremal and can be
disregarded for further consideration. If the latter, although p is not necessarily an extreme
point of S, one can easily in O(n) time find the point p′ ∈ S that maximizes n · p′. Such a
point is extremal, and can be added to E ; note that it cannot already be in E .

Suppose the number of extreme points is k which is much smaller than the input
size m. Then the LP to be solved can never have more than k constraints compared
with m constraints in the classic method. We note one point that is not mentioned
in [3]. In the description above it is assumed that p′ is unique. But there may be
many points of S on the hyperplane n · x = n · p′. If these points are not in convex
position a non-extreme point of S on themaximizing hyperplanemay be selected and
marked as extremal in the output. To resolve these degenerate cases a further recursive
search may be needed on this hyperplane, increasing the worst-case computational
complexity somewhat.

Parallel Redundancy Removal in lrslib 215

We will see in Sect. 5 that Clarkson’s method is considerably faster than the
classical method for inputs with high redundancy. It is usually somewhat faster even
on inputs with low redundancy since the LPs it solves start out small, gradually
increasing to the full set of non-redundant constraints at the end of the run. In the
classical method, all LPs contain all constraints at the beginning and redundant
constraints are deleted. To our knowledge there is no publicly available parallel
implementation of Clarkson’s method and it looks like an interesting challenge.

Finally an alternative, but usually much slower, method of computing a minimum
representation is via the H /V transformation. Starting with any H -representation,
a minimum representation of its V -representation will be produced. This can then
be re-input to produce a minimum representation of the original H -representation.
Although this is often impractical, it is a good way to independently verify results
on relatively small instances when testing codes.

Conversely, for many problems it is faster to first compute a minimum represen-
tation before doing an H /V conversion. This is because the minimum representation
computation is usually easier and the potential reduction in problem size and degen-
eracy speeds up the H /V conversion. However, in Sect. 5 wewill see instances where
this is not the case.

4 Projection by the Fourier-Motzkin Method

Projection of a polyhedron P along coordinate axes to a lower dimension is an
important problem in many areas. For this problem the complexity is very different
for H -representations and V -representations. We start with the latter because it is
very straightforward: simply delete the coordinates of the vertices/rays/linearities that
are to be projected out. This will normally generate a redundant V -representation
and the methods of the last section can be used to remove any redundancies.

The F-M method can be used to project an H -representation. See [5] or [8] for
details. We give a sketch here to describe how parallel redundancy removal can be
used. The basic idea is to project out one variable at a time. We start with an H -
representation (1) of P and for simplicity describe how to project out xn . A minor
modification allows the elimination of any arbitrary variable.

Fourier-Motzkin elimination of xn
(a) If there is an i ∈ L with coefficient ain 	= 0, use the equation of row i to eliminate

xn getting a new H -representation. Go to step (d).
(b) Define index sets

R = {i ∈ I : ain > 0} S = {i ∈ I : ain < 0} Z = {i ∈ I : ain = 0}

Since bL + ALx = 0 and bZ + AZ x ≥ 0 do not contain xn they remain
unchanged after projecting out xn .

(c) For each r ∈ R and s ∈ S combine the inequalities

216 D. Avis and C. Jordan

− br −
n−1∑

j=1

ar j x j ≤ arnxn − asnxn ≤ bs +
n−1∑

j=1

asj x j (8)

obtaining
−br − ∑n−1

j=1 ar j x j

arn
≤ xn ≤ bs + ∑n−1

j=1 asj x j

−asn
. (9)

Deleting xn we get a new inequality in the remaining variables. The new H -
representation has |L| equations and |Z | + |R||S| inequalities.

(d) Compute a minimum representation of the new H -representation.

The correctness of this procedure is not difficult to establish, see either of the two
earlier references for details. By repeating the procedure a projection onto any subset
of coordinate axes can be found.

It is clear that virtually all the computational time will be taken in step (d) since
in the worst case there may be roughly n2/4 inequalities in the system. Various
methods have been proposed to do this computation (see e.g. [5]) but in lrslib we
use the parallel algorithm described in the previous section for finding a minimum
representation of the new H -representation. A key observation is that checking for
hidden linearities only needs to be done initially for the input polyhedron P .

Proposition 2 If the input H-representation of P for Fourier-Motzkin elimination
is a minimum representation then the H-representation produced in either step (a)
or (c) of the procedure will not contain hidden linearities.

Proof By assumption, P has dimension n − |L|. If step (a) is executed one equation
is eliminated from L and the number of variables becomes n − 1. The dimension is
unchanged and there can be no hidden linearities introduced.

If step (c) is executed, suppose (9) becomes a linearity for a certain pair r, s. The
inequalities become equations and we can equate coefficients obtaining br/arn =
bs/asn and ar j/arn = asj/asn, j = 1, . . . , n. Therefore (8) defines a hidden linearity,
a contradiction. �

As pointed out in the introduction, it is generally much easier to project a V -
representation than to project an H -representation. We can make use of this fact to
produce a projection of an H -representation without using F-M elimination. Let PH

be the H -representation of a polyhedron P as in (1). Suppose a projection map π

projects P onto Q. F-M elimination directly computes QH = π(PH). However, as
shown in Figure 1 one can first convert PH into its V -representation PV , compute
QV = π(PV) and finally compute QH from QV . The first and third operations are
H /V transformations. The success of this method depends on doing these more
efficiently than the F-M elimination computation. We will see this in Sect. 5.

Parallel Redundancy Removal in lrslib 217

Fig. 1 Golden square

5 Computational Results

In this section we give computational results using two parallel clusters of computers
at Kyoto University. For most results we used themi cluster of three similar machines
containing Ryzen Threadripper CPUs with a total of 160 cores and average clock
speed of 2.8GHz. We made timings for 8 cores (typical laptop), 32 cores (high
performance desktop) and 160 cores (small cluster). Some results are given using
themai clusterwithAMDOpteronCPUswith somewhat slower 2.3GHzclock speed.
Our implementation is included in lrslib v.7.3.1 All programs used do computations
in exact arithmetic.

5.1 Redundancy Removal and Minimum Representation

In this section we present some computational results to illustrate the speedup
obtained by using parallel processing for redundancy removal and computing a min-
imum representation. The single processor version is executed by lrs with options
testlin and redund, aliased as minrep, and the parallel version is executed by
mplrs with the minrep option. Our intention is not to do a comparison with other
methods. However, we include results using Clarkson’s algorithm clark, as imple-
mented in cddlib v.0.94 m2 by Komei Fukuda, to show the remarkable speedups it
achieves for highly redundant problems. The results are shown in Table 1 and the
problems are described in the Appendix. They range from problems with no redun-
dancy, at the top of the table, to problems for which almost all input is redundant,
at the bottom. As expected clark gives best performance for the highly redundant
problems. Parallel processing gives good speedups for the classical method.

1 https://cgm.cs.mcgill.ca/~avis/C/lrs.html
2 https://github.com/cddlib/cddlib

https://cgm.cs.mcgill.ca/~avis/C/lrs.html
https://github.com/cddlib/cddlib

218 D. Avis and C. Jordan

Table 1 Redundancy removal (time in seconds, mi cluster)
Name H/V min din mout Redundancy

%
clark minrep mplrs

8 cores 32 cores 160 cores

sphere V 20001 3 20000 0.01 1899 4833 830 197 51

r500 V 500 100 500 0 6747 15067 2682 672 203

lambda V 2001 63 2000 0.1 16270 27042 6137 2018 668

tsp7 H 3447 21 3444 0.1 165 203 18 4 3

ucube H 40000 6 3551 91 729 8515 2085 645 289

ctype V 9075 35 36 99 194 9518 5656 721 203

ducube H 40000 6 261 99 83 2814 636 296 145

Table 2 One round of F-M elimination (time in seconds, mi cluster)
Name
(H-reps)

min din mFM mout Redundancy
%

clark fel mplrs

8 cores 32 cores 160 cores

lambda2 1080 63 4560 4320 5 >300000‡ 6981 1327 521 236

ducube2 261 6 16897 1686 90 202 1310 329 87 29

hec 755 30 20029 949 95 455 237 76 53 29

cp6 368 15 18592 224 99 59 273 55 15 9

ucube2 3551 6 3134438 17947 99 732814† – – – –

sphere2 500 3 62436 61 100 89 935 421 148 149

† mai, also see Table3
‡ suspected bug

5.2 Fourier-Motzkin Elimination

For these experiments, the input for each problem is an H -representation and we do
one round of F-M elimination eliminating the last column. As explained in Sect. 4,
almost all of the work consists of redundancy elimination in step (d) of the procedure.
We extracted the inequality system created in step (c) so that we could test paral-
lelization and Clarkson’s algorithm on problems of this sort. The problems tested are
basically the same as before, with a few exceptions, and we use the non-redundant
version. The non-redundant description of ctype is a 36-dimensional simplex so pro-
jection is trivial. For spherewe first computed an H -representation to use as an input
file. Since the result is too big, we use the first 500 rows of the H -representation
renaming the result sphere2. Similarly, lambda2 is part of the H -representation cor-
responding to lambda. ucube2 is the non-redundant H -representation of ucube. We
add two additional combinatorial polytopes. The results are given in Table2.

In Table 2, mFM is the number of new inequalities produced in step (c) of F-
M elimination and mout the number of those remaining after redundancy removal.
Redundancy increases as we go down the table and so does the efficiency of clark.
Parallel processing again gives substantial speedups up to 32 cores but with limited
improvement after that.

The problem ucube2 demonstrates the use of the golden square from Fig. 1.
An immediate application of F-M generates 396,193,328 inequalities for redun-

Parallel Redundancy Removal in lrslib 219

Table 3 Projections of ucube2 by golden square (times in days:hours:minutes), mi cluster
ucube2 H −→ V V

π−→ Hnr

mH mV lcdd lrs 8 procs 32 procs 160
procs

dout lrs 8 procs 32 procs 160
procs

3551 303965 14:07 :01 :01 :00 :00 5 >7:00:00 >7:00:00 2:20:21 1:07:55

4 16:43 11:21 5:29 3:20

3 2:25 :50 :31 :25

2 :02 :09 :06 :10

ucube2 V
π−→ Vnr Vnr −→ Hnr

dout mVnr clark minrep 8 cores 32 cores 160
cores

mHnr lrs 8 cores 32 cores 160
cores

5 121735 4:22:35 >7:00:00 >7:00:00 2:21:43 23:13 17947 >7:00:00 3:03:44 19:25 6:39

4 24405 2:04:23† 19:12:20† 4:11:17† 2:04:09† 13:45† 11817 1:30 :25 :07 :03

3 1875 :58 1:23:28 17:55 5:24 3:18 1604 :00 :00 :00 :00

2 40 :01 21:55 7:07 4:37 2:14 40 :00 :00 :00 :00

† mai cluster

dancy removal, a formidable computation. Starting with the non-redundant H -
representation of ucube2 F-M generates 3,134,438 inequalities for redundancy
removal which is still a very challenging computation. Using clark on mai32ef this
took over eight days even though it is 99% redundant. This direct approach to the
problem is out of reach for minrep/mplrs,however we can solve the problem via ver-
tex enumeration. Doing so we obtain only 303,965 vertices which we can project to
lower dimension and then convert to an H -representation. The results are given in
Table 3.

The top left part of the table shows the computation time of the non-redundant V -
representation V of ucube2 from its H -representation H . We use lcdd from cddlib
to verify the results using the double description method. V is then projected to
d = 5, 4, 3, 2, which introduces redundancy, and is essentially instantaneous. For
each projection the top right of the table shows a direct computation of its H -
representation, which will be non-redundant and is denoted Hnr . For d = 5, only
the 32-core and 160-core runs could be completed within one week. Running times
for the other dimensions are much faster, decreasing as the dimension diminishes.
Note that with F-M elimination the opposite occurs: due to its iterative approach
running times increase as the dimension diminishes.

The bottom parts of the table give the results of first removing redundancy from
V getting Vnr and then using it to compute Hnr . Most of the time is taken in the first
step, shown in the bottom left part. Again running times decrease dramatically as
the dimension decreases. Redundancy is high in the lower dimensions, and so clark
does very well there. For d = 5 it is interesting the running times using 32 and 160
cores are very close to those obtained by the direct Hnr computation.

220 D. Avis and C. Jordan

6 Conclusions and Future Directions

Wehave introduced a parallelization of the classical approach to redundancy removal
which gives substantial speedups with modest hardware up to about 32 cores. The
return on increasing the number of cores is modest, possibly due to the relatively
high fixed startup computations which each processor must make. This begins to
dominate the solution time as the number of input rows to process decreases with the
number of cores. So one future direction is to improve the scaling to a large number
of cores.

As an application we used the codes for redundancy removal in F-M elimination,
obtaining similar results. For highly redundant problems Clarkson’s algorithm, as
implemented by Fukuda, gives extremely good performance without any paralleliza-
tion. As F-M elimination can produce extremely high redundancy it is particularly
well suited for this purpose. An interesting challenge is to find an efficient method
to parallelize Clarkson’s algorithm.

The number of new inequalities produced by F-M elimination is highly dependent
on the input problem, as we see in Table2. As we saw in the case of ucube2, it can be
considerably faster to first compute a V -representation, project it, and recompute an
H -representation. This is increasingly competitive for problems where it is required
to project into a relatively low dimension. A final future direction would be to pro-
duce a hybrid code for F-M elimination that combines both methods automatically
selecting the more appropriate method for each instance.

Acknowledgements The authors would like to thank William Cook for pointing out the paper
of Freund et al. and Komei Fukuda for discussions on Clarkson’s algorithm. This research was
supported by JSPS Kakenhi Grants 20H00579, 20H00595, 20H05965, 22H05001 and 23K11043.

Appendix

We briefly describe the test problems used in Sect. 5.

• sphere is a random set of 20000 rational points on the unit sphere. We added a
redundant vertex at line 13451 of the input.

• r500 is a random set of 500 points in the 100-dimensional cube with coordinates
between 1 and 9.

• lambda derives from theLambda polytope in quantumphysics andwas contributed
by Selman Ipek. For Table 1 we added a redundant constraint at line 1393 of the
input.

• tsp7 is the seven city travelling salesman polytope. We added 3 hidden linearities.
• cp6 is the 6 point cut polytope.
• ucube, ctype and ducube were downloaded from Komei Fukuda’s webpage:
https://people.inf.ethz.ch/fukudak/ClarksonExp/ExperimentCtype.html
(ctype was contributed by Mathieu Dutour).

https://people.inf.ethz.ch/fukudak/ClarksonExp/ExperimentCtype.html

Parallel Redundancy Removal in lrslib 221

• hec is the holographic cone, again from quantum physics, developed with Sergio
Hernández-Cuenca.

To get the intermediate polyhedra for input to clark for Table2 one can fel with the
verbose option added.

References

1. D. Avis, C. Jordan, mplrs: A scalable parallel vertex/facet enumeration code. Math. Program.
Comput. 10(2), 267–302 (2018)

2. V. Chvátal, Linear Programming (W.H. Freeman, 1983)
3. K. L. Clarkson, More output-sensitive geometric algorithms, in 35th Annual Symposium on

Foundations of Computer Science (FOCS 1994) (IEEE Computer Society, 1994), pp. 695–702
4. R. M. Freund, R. Roundy, M.J. Todd, Identifying the set of always-active constraints in a system

of linear inequalities by a single linear program, in Working papers 1674-85 (Massachusetts
Institute of Technology (MIT), Sloan School of Management, 1985)

5. K. Fukuda. Polyhedral Computation (ETH, Zurich, 2020). https://doi.org/10.3929/ethz-b-
000426218

6. K. Fukuda, B. Gärtner, M. Szedlák, Combinatorial redundancy detection, in 31st International
Symposium on Computational Geometry (SoCG 2015), Leibniz International Proceedings in
Informatics (LIPIcs), vol. 34. (Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2015), pp.
315–328

7. H.R. Tiwary, On computing the shadows and slices of polytopes (2008). arXiv:0804.4150
8. G.M. Ziegler, Lectures on Polytopes, Graduate Texts in Mathematics, vol. 152. (Springer, 1995)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.3929/ethz-b-000426218
https://doi.org/10.3929/ethz-b-000426218
http://arxiv.org/abs/0804.4150
http://creativecommons.org/licenses/by/4.0/

	 Parallel Redundancy Removal in lrslib with Application to Projections
	1 Introduction
	2 Basic Definitions
	3 Parallel Redundancy Removal and Finding a Minimum Representation
	4 Projection by the Fourier-Motzkin Method
	5 Computational Results
	5.1 Redundancy Removal and Minimum Representation
	5.2 Fourier-Motzkin Elimination

	6 Conclusions and Future Directions
	References

